8,758 research outputs found

    Quantifying selection in immune receptor repertoires

    Full text link
    The efficient recognition of pathogens by the adaptive immune system relies on the diversity of receptors displayed at the surface of immune cells. T-cell receptor diversity results from an initial random DNA editing process, called VDJ recombination, followed by functional selection of cells according to the interaction of their surface receptors with self and foreign antigenic peptides. To quantify the effect of selection on the highly variable elements of the receptor, we apply a probabilistic maximum likelihood approach to the analysis of high-throughput sequence data from the β\beta-chain of human T-cell receptors. We quantify selection factors for V and J gene choice, and for the length and amino-acid composition of the variable region. Our approach is necessary to disentangle the effects of selection from biases inherent in the recombination process. Inferred selection factors differ little between donors, or between naive and memory repertoires. The number of sequences shared between donors is well-predicted by the model, indicating a purely stochastic origin of such "public" sequences. We find a significant correlation between biases induced by VDJ recombination and our inferred selection factors, together with a reduction of diversity during selection. Both effects suggest that natural selection acting on the recombination process has anticipated the selection pressures experienced during somatic evolution

    Effect of Muons on the Phase Transition in Magnetised Proto-Neutron Star Matter

    Get PDF
    We study the effect of inclusion of muons and the muon neutrinos on the phase transition from nuclear to quark matter in a magnetised proto-neutron star and compare our results with those obtained by us without the muons. We find that the inclusion of muons changes slightly the nuclear density at which transition occurs.However the dependence of this transition density on various chemical potentials, temperature and the magnetic field remains quantitatively the same.Comment: LaTex2e file with four postscript figure

    Oscillation dynamics of embolic microspheres in flows with red blood cell suspensions

    No full text
    Dynamic nature of particle motion in blood flow is an important determinant of embolization based cancer therapy. Yet, the manner in which the presence of high volume fraction of red blood cells influences the particle dynamics remains unknown. Here, by investigating the motions of embolic microspheres in pressure-driven flows of red blood cell suspensions through capillaries, we illustrate unique oscillatory trends in particle trajectories, which are not observable in Newtonian fluid flows. Our investigation reveals that such oscillatory behavior essentially manifests when three simultaneous conditions, namely, the Reynolds number beyond a threshold limit, degree of confinement beyond a critical limit, and high hematocrit level, are fulfilled simultaneously. Given that these conditions are extremely relevant to fluid dynamics of blood or polymer flow, the observations reported here bear significant implications on embolization based cancer treatment as well as for complex multiphase fluidics involving particle
    • …
    corecore